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All-analog photoelectronic chip for 
high-speed vision tasks

Yitong Chen1,7, Maimaiti Nazhamaiti2,7, Han Xu2,7, Yao Meng3, Tiankuang Zhou1,3,4, Guangpu Li1,3, 
Jingtao Fan1, Qi Wei5, Jiamin Wu1,3,6 ✉, Fei Qiao2 ✉, Lu Fang2,3,6 ✉ & Qionghai Dai1,3,6 ✉

Photonic computing enables faster and more energy-efficient processing of vision 
data1–5. However, experimental superiority of deployable systems remains a challenge 
because of complicated optical nonlinearities, considerable power consumption  
of analog-to-digital converters (ADCs) for downstream digital processing and 
vulnerability to noises and system errors1,6–8. Here we propose an all-analog chip 
combining electronic and light computing (ACCEL). It has a systemic energy efficiency 
of 74.8 peta-operations per second per watt and a computing speed of 4.6 peta- 
operations per second (more than 99% implemented by optics), corresponding to 
more than three and one order of magnitude higher than state-of-the-art computing 
processors, respectively. After applying diffractive optical computing as an optical 
encoder for feature extraction, the light-induced photocurrents are directly used for 
further calculation in an integrated analog computing chip without the requirement 
of analog-to-digital converters, leading to a low computing latency of 72 ns for each 
frame. With joint optimizations of optoelectronic computing and adaptive training, 
ACCEL achieves competitive classification accuracies of 85.5%, 82.0% and 92.6%, 
respectively, for Fashion-MNIST, 3-class ImageNet classification and time-lapse video 
recognition task experimentally, while showing superior system robustness in low- 
light conditions (0.14 fJ μm−2 each frame). ACCEL can be used across a broad range of 
applications such as wearable devices, autonomous driving and industrial inspections.

Computer vision has broad applications, including autonomous 
driving9,10, robotics11, medical diagnosis12–14 and wearable devices15,16. 
Although deep learning has notably improved the performance of 
vision tasks at the algorithmic level17,18, these tasks are fundamentally 
limited by energy consumption and computing speed of traditional 
digital computing units. During a typical vision task, a high-resolution 
image is first captured by the sensor, then digitized by a large number 
of analog-to-digital converters (ADCs) and processed through a neural 
network (NN) on a digital processing unit for classification. In this case, 
high-throughput, high-precision ADCs reduce the imaging frame rate 
because of limited data bandwidth and lead to considerable energy 
consumption. Moreover, short exposure time is required to complete 
vision tasks with ultra-low latency, demanding extremely high comput-
ing power and noise robustness.

Recently, photonic computing has emerged as one of the most prom-
ising approaches to address these problems1–5,19. It uses the features of 
light to represent information and to compute using propagation and 
interference1,2,5,6,20–32. By implementing deep neural networks (DNNs), 
optical neural networks (ONNs) have been reported to achieve a com-
puting efficiency of 1.58 tera-operations per second (TOPS) per watt5–7, 
much higher than advanced digital electronic computing platforms 
such as graphic processing units (GPUs)33,34 (about 0.52 TOPS W−1). 
However, existing photonic computing systems still suffer from severe 

practical limitations, including complicated implementation of opti-
cal nonlinearity, considerable power consumption of ADCs and vul-
nerability to noises and system errors. For example, Mach–Zehnder 
interferometers are usually constrained by integration scales from 
achieving high systemic computing speed7, whereas diffractive DNNs 
with abundant nodes are hard to incorporate efficient optical nonlin-
earity1,6. Moreover, previous ONNs may be sensitive to noise at a low 
signal-to-noise ratio (SNR)8,28,35, making them vulnerable to shot-noise 
fluctuations because of ultra-short exposure time. These issues notably 
prevent existing photonic computing from demonstrating systemic 
supremacy over traditional digital computing in practical computer 
vision tasks.

Here we propose an all-analog chip combining electronics and light, 
named ACCEL, for energy-efficient and ultra-high-speed vision tasks 
with competitive task performance and scalability. Instead of turning 
to digital units to tackle optical computing limitations, ACCEL fuses 
diffractive optical analog computing (OAC) and electronic analog 
computing (EAC) with scalability, nonlinearity and flexibility in one 
chip. In this way, ACCEL achieves an experimental energy efficiency 
of 74.8 peta-OPS W−1 and a computing speed of 4.6 peta-OPS, three 
and one order of magnitude higher than state-of-the-art computing 
chips, respectively. To compensate for manufacturing defects and 
alignment errors, we develop an adaptive training method, leading to 
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experimental test accuracies of 97.1%, 85.5% and 74.6% over the 10-class 
classification of MNIST (Modified National Institute of Standards and 
Technology), Fashion-MNIST and Kuzushiji-MNIST (KMNIST), respec-
tively, as well as 82.0% on 3-class ImageNet classification and 92.6% on 
5-class traffic video judgement. By conducting noise-robust feature 
extraction with OAC, ACCEL reduces massive sampling requirements 
during photoelectric conversion with robustness under ultra-low expo-
sure (about 0.14 fJ μm−2 per frame), achieving up to 29.4% increase of 
accuracy compared with individual optical or electronic NNs. Further-
more, ACCEL can be reconfigured for different tasks by EAC without 
changing the OAC module. We believe that the marked performance 
of ACCEL demonstrates a practical solution for next-generation intel-
ligent computing by including the advantages of both photons and 
electrons in an all-analog way.

The architecture of ACCEL
As digital devices remain the mainstream, vision tasks usually require 
to convert the optical signals even after optical computing into digital 
signals by large-scale photodiodes and power-hungry ADCs for neces-
sary post-processing (Fig. 1a). Otherwise, complicated implementation 
of precise optical nonlinearity and memory are required, usually at the 
cost of latency and power consumption at the system level36–39. Here 
we design an optoelectronic hybrid architecture in an all-analog way 
to reduce massive ADCs for high-speed and power-efficient vision 
tasks with competitive task performance. By illuminating targets with 
either coherent or incoherent light, we encode the information into 
light fields. With a common imaging system, ACCEL is placed at the 
image plane for direct image processing such as classifications. The first 
part of ACCEL interacting with the light field is a multi-layer diffractive 

optical computing module1 to extract features of high-resolution 
images at light speed, termed as OAC, reducing the requirement of 
optoelectronic conversion through dimension reduction all-optically 
(Fig. 1b). Phase masks in OAC are trained to process the data encoded 
in light fields with operations of dot product and light diffraction, 
equivalent to linear matrix multiplications of a complex light field. 
The extracted features encoded in light fields after OAC are connected 
to EAC with a 32 × 32 photodiode array to convert optical signals into 
analog electronic signals based on the photoelectric effect, serving 
as a nonlinear activation. Without the requirement of ADCs, these 
photodiodes are either connected to the V+ positive line or V− negative 
line determined by the weights stored in static random-access memory 
(SRAM). The generated photocurrents are first summed up on both 
lines based on Kirchhoff’s law. Then an analog subtractor calculates 
the differential voltage of the computing lines V+ and V− as an output 
node. By resetting the computing lines and updating weights with 
SRAM, ACCEL can output another pulse with different connections of 
photodiodes. Therefore, EAC is equivalent to a binary-weighted fully 
connected NN, corresponding to the calculation matrix of 1,024 × Noutput 
(where Noutput is the number of output pulses). The output can be directly 
used as predicted labels of classification categories or as inputs of 
another digital NN. For all-analog computation, we set Noutput as n for 
n-class classification without any digital NNs. For ACCEL with a single 
EAC core, it works sequentially by outputting multiple pulses corre-
sponding to Noutput output nodes of the binary NN in EAC (Fig. 1b). All 
these functions can be integrated on one chip in an all-analog way for 
broad applications and are compatible with existing digital NNs for 
more complicated tasks (Fig. 1c).

For OAC, we integrated diffractive optical computing directly in 
front of EAC with a specific distance to conduct feature extraction as 
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Fig. 1 | The architecture of ACCEL. a, The workflow of traditional optoelectronic 
computing, including large-scale photodiode and ADC arrays. b, The workflow 
of ACCEL. A diffractive optical computing module processes the input image  
in the optical domain for feature extraction, and its output light field is used  
to generate photocurrents by the photodiode array for analog electronic 
computing directly. EAC outputs sequential pulses corresponding to multiple 
output nodes of the equivalent network. The binary weights in EAC are 

reconfigured during each pulse by SRAM, by switching the connection of the 
photodiodes to either V+ or V− lines. The comparator outputs the pulse with the 
maximum voltage as the predicted result of ACCEL. c, Schematic of ACCEL with 
an OAC integrated directly in front of an EAC circuit for high-speed, low-energy 
processing of vision tasks. MZI, Mach–Zehnder interferometer; D2NN, 
diffractive deep neural network .
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an optical encoder (Fig. 2a). Weights in phase masks can be trained 
with numerical beam propagations based on Rayleigh–Sommerfeld 
diffraction theory. A simple three-layer digital NN (Supplementary 
Table 1) can reconstruct images in the MNIST dataset with only 2% 
samplings, demonstrating the data compression performance of 
OAC (Fig. 2b,c). Furthermore, when directly using a digital NN (Sup-
plementary Table 1) for classification with the output of OAC, the 
same classification accuracy can be achieved with reduced sam-
plings (Fig. 2d). Thus, the number of ADCs can be effectively reduced 
by 98% without impairment on accuracy. Addressing more compli-
cated tasks or being connected to a less complicated network may 
reduce the compression rate and require higher dimensionality for the  
feature space.

For EAC, we have 32 × 32 pixel circuits here (Fig. 2e–g), correspond-
ing to the calculation matrix of 1,024 × Noutput with the weight wij, where 
1 ≤ i ≤ 1,024 labels the ith photodiode, and 1 ≤ j ≤ Noutput labels the jth 
output node (voltage pulse) with a maximum number Noutput = 16 in 
our fabricated chip. Each pixel circuit is composed of one photodi-
ode to generate photocurrent Iph,i used directly for analog computing, 
three switches and one SRAM macro to store weights wij of the binary 
network (Fig. 2h, Extended Data Fig. 1 and Supplementary Note 1). By 
turning on either switch S2 or S3 with the SRAM macro, determined 
by the weight wij, the cathode of the ith photodiode is connected to 
the positive computing line V+ (wij = 1) or negative computing line V− 
(wij = −1) for the jth output node. The on-chip controller writes trained 
weights to SRAM macro in each pixel through SRAM input/output (I/O) 
before inference. The accumulated photocurrents with either positive 
or negative weights discharge the computing lines. The voltage-drop 

difference between V+ and V− after an accumulating time ta is sent out 
directly as an output pulse (Methods). The computing power con-
sumption of EAC mainly comes from the discharging power of the 
photocurrent. Meanwhile, all pixels compute simultaneously, thus not 
only improving computing speed but also reducing readout noises. 
The voltage-drop difference of the jth output node between comput-
ing lines V+ and V− proportionally correspond to the computation of 
ΔVj = ta/CL × ∑iwijIph,i ∝ ∑iwijxi, where xi is the light intensity at ith photodi-
ode, proportional to the photocurrent Iph,i and CL is the load capacitance 
of computing lines, which is determined by the number of connected 
photodiodes and parasitic capacitance between metal interconnects. 
To make it consistent, we connect one pair of positive capacitance com-
pensation module (P-CCM) and negative capacitance compensation 
module (N-CCM) to computing lines V+ and V−, respectively (Fig. 2f, 
Extended Data Fig. 1d and Supplementary Note 2).

Then the whole computation process of ACCEL can be expressed as 
follows: Vo = bf(wx), where x is the original input data; w is an equiva-
lent multiplied matrix in OAC; f(x) is the nonlinear activation function 
generated with photodiodes (Extended Data Fig. 2 and Supplementary 
Note 3); b is the binary-weighted multiplied matrix in EAC; and Vo is the 
analog output pulse voltages. For the training of ACCEL, we model the 
complete analog physical process in OAC and EAC jointly and imple-
ment end-to-end fusion training (Methods).

Performance characterization of ACCEL
A typical workflow of ACCEL is shown in Fig. 3a. The analog output 
voltages can be used directly as the classification results or sent into 
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Fig. 2 | Implementation of ACCEL. a, The principle of OAC for feature 
extraction of large-scale images. b, Simulated examples of OAC processing. 
OAC encodes the 28 × 28 original inputs into 4 × 4 features. A three-layer fully 
connected digital NN (Supplementary Table 1) reconstructs the image with the 
OAC output features. c, The SSIM (structural similarity index) of reconstruction 
results with OAC outputs under different compression ratios obtained by 
numerical simulations on the MNIST dataset. Examples of reconstruction 
images corresponding to different compression ratios are displayed in the 
corner. Compression ratio is the ratio of the dimensionality of OAC output to 
the dimensionality of original images. The example images for the original 
input are adapted from the MNIST dataset40 with permission. d, Classification 
accuracy by using OAC output as the input connected to a three-layer fully 

connected digital NN (Supplementary Table 1) under different compression 
ratios of OAC obtained by numerical simulations. The pixel size of the phase 
mask in OAC is 3 μm and the diffraction distance is 3 mm. The neuron number  
in OAC is 500 × 500. The red dashed line is the classification accuracy of the 
digital NN using the original images without OAC as the input. e, Photo of the 
EAC chip. Scale bar, 500 μm. The chip consists of a 32 × 32 photodiode array, two 
capacitance compensation modules P-CCM and N-CCM, voltage output module 
and peripheral SRAM I/O and controller. f, The structure of the capacitance 
compensation module. g, The structure of the EAC array. h, Magnified circuit 
structure of each pixel. a.u., arbitrary unit; Max., maximum; Min., minimum; 
Int., intensity; PD, photodiode.



Nature | Vol 623 | 2 November 2023 | 51

g

e

a

b

0
Training epochs

30

OAC
EAC

ACCEL
ACCEL + single-layer digital NN

Three-layer digital NN ACCEL
ACCEL + single-layer digital NN

Three-layer digital NN

0
Training epochs

30 ACCEL Three-layer
digital

NN

0

40

60

A
cc

ur
ac

y 
(%

)

80.7
75.3

100

85.3

ACCEL
(six-layer

OAC)

LeNet-5

84.0

Exposure power (training)
(fJ μm–2 per frame)

3.38

E
xp

os
ur

e 
p

ow
er

 (t
es

tin
g)

(fJ
 μ

m
–2

 p
er

 fr
am

e)

ACCEL

2.30

Exposure power (training)
(fJ μm–2 per frame)

E
xp

os
ur

e 
p

ow
er

 (t
es

tin
g)

(fJ
 μ

m
–2

 p
er

 fr
am

e)

EAC

Exposure power (training)
(fJ μm–2 per frame)

E
xp

os
ur

e 
p

ow
er

 (t
es

tin
g)

(fJ
 μ

m
–2

 p
er

 fr
am

e)

0

20

40

60

80

100
Acc. (%)

OAC

2.30

1.22

0 320

Training epochs

Pre-training

Adaptive
training
(pixel

shifting)

Adaptive
training
(image

rotation)

Adaptive
training

(OAC weight
error)

Weight update

Ground truth

Measured results
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Input image

OAC
EAC

Analog output
voltage of ACCEL

… …

…

…

Extracted features

Electronic analog signalOptical signal

Small-scale
digital neural network

or
Comparator

Small-scale
interface

(Optional digital-processing)

Electronic digital signal

ADC

10-class MNIST 10-class Fashion-MNIST 3-class ImageNet
(sorrel, ambulance, wardrobe)100

80

60

40

20

0

Te
st

in
g 

ac
cu

ra
cy

 (%
)

100

80

60

40

20

0

Te
st

in
g 

ac
cu

ra
cy

 (%
)

80

20

100

80

60

40

20

0

Te
st

in
g 

ac
cu

ra
cy

 (%
)

15 45 15 45

1.22 0.14 3.38 2.30 1.22 0.14 3.38 2.30 1.22 0.14
3.38

0.14

2.30

1.22

3.38

0.14

2.30

1.22

3.38

0.14

80 160 240

dc

f Input
image OAC Photodiode

plane 

Fig. 3 | Numerical evaluation of ACCEL performance. a, The workflow of 
ACCEL for image classification. A large-scale OAC encodes the original inputs 
into small-scale features and the EAC computes the final results in an all-analog 
way. An optional small-scale digital NN can be connected to ACCEL for more 
complicated tasks or time-lapse applications at a low cost. b–d, Classification 
accuracies of different methods on 10-class MNIST (b), 10-class Fashion-MNIST 
(c) and 3-class ImageNet (d) obtained by numerical simulations. Detailed 
structures of all digital networks are listed in Supplementary Table 1. e, The 
map of classification accuracies of three different methods (ACCEL, EAC-only 
and OAC-only) trained under different incident light powers and tested under 
different incident light powers on the MNIST dataset obtained by numerical 
simulations. The light intensity is represented by the exposure energy in a 

1-μm2 area for one image frame. f, Schematic of adaptive training, which 
fine-tunes the weights in EAC for the correction of system errors in practical 
applications. The output of OAC is captured by the photodiode array directly 
and is used to fine-tune the EAC weights with back propagation. Scale bar, 
300 μm. The example input image is adapted from the MNIST dataset40 with 
permission. g, Testing accuracies of ACCEL with adaptive training to resist 
different kinds of manufacturing errors and misalignments obtained by 
numerical simulations. The pixel size of the phase mask in OAC is 3.0 μm, and 
the diffraction distance is 3 mm. For manufacturing error, the OAC weight is 
disturbed by Gaussian noises with zero mean value and a standard deviation of 
0.26π. For misalignments, the 32 × 32 EAC input is shifted horizontally by one 
column and rotated clockwise by 5° around the centre.
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a small-scale digital NN with a single ADC or comparator to further 
improve the performance. Before the experimental demonstration, we 
first conducted numerical simulations to evaluate ACCEL quantitatively.

For the classification of 10-class handwritten digits on the MNIST 
dataset40, single-layer OAC-only and EAC-only can achieve classifica-
tion accuracies of 66% and 89%, respectively (Fig. 3b), whereas the 
accuracy of ACCEL in the all-analog mode numerically reached 98%, 
competitive with a nonlinear three-layer digital fully connected NN 
(Supplementary Table 1). Even for a more challenging classification task 
(Fashion-MNIST of fashion products41), all-analog ACCEL numerically 
showed comparable performance to digital NNs (Fig. 3c). A small-scale 
fully connected digital layer (16 × 10 nodes) can also be connected to 
improve the accuracy to about 89% for Fashion-MNIST with negligible 
additional energy consumption and latency (Supplementary Note 4).

With a high-resolution mask in OAC for highly multiplexing of spatial 
modes, ACCEL can process more complicated high-resolution images 
(256 × 256 pixels), such as ImageNet42, which remains a challenge for 
state-of-the-art photonic processors (Fig. 3d). We compared ACCEL 
and digital NNs over a 3-class ImageNet classification task on sorrels, 
ambulances and wardrobes. All-analog ACCEL (with single-layer OAC) 
numerically achieved an accuracy of 80.7%, even better than a fully con-
nected three-layer nonlinear digital NN (75.3%) with a large number of 
neurons (Supplementary Table 1). More diffractive layers in OAC further 
improve the performance. An all-analog ACCEL with a six-layer OAC 
numerically achieved an accuracy of 84.0%, comparable to a digital 
convolutional NN such as LeNet-5 (85.3%).

Another advantage of ACCEL is noise robustness. For practical applica-
tions in high-speed vision tasks, ultra-fast processing usually results in 
short exposure time. It leads to extremely low SNR because of shot noises, 
readout noises and electronic thermal noises, which may become the 
bottleneck for actual processing speed. ACCEL has intrinsic advantages 
in noise robustness43 by establishing a latent feature space to converge 
light together in local regions and reduced ADCs for lower readout noises 
when considering noises during training (Methods). Although testing 
accuracy on MNIST decreases with the reduction of light power, ACCEL 
trained with the consideration of noise slows down this process (Fig. 3e). 
Compared with individual OAC and individual EAC, ACCEL numerically 
shows better noise robustness. Even with extremely low-light intensity 
of 0.14 fJ μm−2 per frame, the testing accuracy of ACCEL remains high, 
which is important for high-speed vision tasks with both low-light-power 
input and strong readout noises in high-speed ADCs.

Another common bottleneck of analog computing is sensitivity to 
system errors induced by inevitable manufacturing defects and mis-
alignment. Thus we establish an adaptive training method to fine-tune 
EAC with back propagation based on the intermediate OAC results cap-
tured by the photodiode array under its sensor mode (Fig. 3f). A small 
part of the training dataset (≤10%) can mitigate accuracy degradation 
due to phase errors of manufacturing or misalignment of shifting and 
rotation (Fig. 3g and Extended Data Fig. 3).

High-performance image classification
To further verify the schematic of ACCEL, we conducted experiments 
with a fabricated ACCEL chip (Fig. 4a and Extended Data Fig. 4). We 
fabricated etched eight-level phase masks with SiO2 by overlay photo-
lithography as OAC (Fig. 4b), integrated directly in front of the photo-
diode array in EAC. A phase-modulation spatial light modulator (SLM) 
can also be used as a reconfigurable diffractive phase mask in OAC, with 
similar experimental output as shown in Fig. 4c. Meanwhile, adaptive 
training in EAC can further reduce the influence of fabrication defects 
and alignment errors, leading to similar experimental classification 
accuracies of ACCEL with SiO2 phase mask and SLM under different 
exposure intensities (Extended Data Fig. 2c,d).

We experimentally validated ACCEL over three datasets: handwrit-
ten digits (MNIST), fashion products (Fashion-MNIST) and cursive 

characters (KMNIST)44. To compare different tasks fairly, we used a 
phase-modulation SLM as the diffractive phase mask in OAC. ACCEL 
in all-analog mode experimentally achieved accuracies of 90.9%, 
80.9% and 67.6% over MNIST, Fashion-MNIST and KMNIST, respec-
tively, after adaptive training, which is close to the simulation per-
formance (Fig. 4d). The decrease in simulation accuracy compared 
with Fig. 3 mainly results from the large pixel size of the SLM (9.2 μm), 
compared with the pixel size of 3 μm used in simulation (Extended 
Data Fig. 5a). Smaller pixel size can increase classification accuracy 
by enhancing diffraction effects with a shorter optimal diffraction 
distance between the mask and the sensor (Extended Data Fig. 5b). 
Furthermore, by connecting a small-scale digital NN (16 × 10 nodes) 
to ACCEL, experimental accuracies are enhanced to 97.1%, 85.5% and 
74.6%, respectively, without sacrificing the systemic processing speed 
and energy consumption (Fig. 4e). To further show the advantage of 
ACCEL on more challenging tasks with high-resolution images, we used 
fabricated SiO2 phase masks in ACCEL to conduct 3-class ImageNet 
classification (Fig. 4f). Without connecting to any digital NNs, ACCEL 
experimentally achieved a testing accuracy of 80.7% with a single-layer 
OAC and EAC in an all-analog way. By increasing the layer number in 
OAC, experimental testing accuracy is further enhanced (82.0% for 
two-layer OAC), even higher than a three-layer, nonlinear, fully con-
nected digital NN (75.3%) and comparable to a convolutional NN such 
as LeNet-5 (85.3%) (Supplementary Table 1).

Furthermore, we characterized the experimental accuracy on differ-
ent datasets under different exposure powers (Fig. 4g–j). A reduction 
in light intensity by more than 35 times disrupts the image detected 
without OAC, which is also challenging for digital NN with similar scales 
(Extended Data Fig. 5c,d). However, OAC preserves the features well 
by integrating more photons in local regions, leading to better perfor-
mance in low-light conditions on different tasks (Fig. 4k).

Finally, we find that the partial reconfigurability of ACCEL in EAC 
enables ACCEL with the same fixed OAC to achieve comparable per-
formance on different tasks to a fully reconfigured ACCEL in both 
EAC and OAC (Extended Data Fig. 6a–e). If we trained one OAC with all 
three datasets jointly, ACCEL with reconfigurable EAC for each dataset 
experimentally achieved even better generalization with only a slight 
accuracy loss (Extended Data Fig. 6f–j).

High-speed time-lapse tasks
Apart from classification of static images, ACCEL facilitates high- 
speed processing of time-lapse tasks by providing a flexible and 
low-consumption interface from analog computing to digital  
memory and computing. With a simple digital chip connected, ACCEL 
can store serial outputs in memory and compute final results with a 
small-scale, single-layer network. Only a low-cost comparator instead of 
high-precision ADC can be used to convert analog signals into 1-bit digi-
tal signals, leading to much smaller energy consumption and latency 
(Extended Data Fig. 1e,f, Supplementary Note 5 and Supplementary 
Table 2).

To show the potential applications in autonomous systems, we 
generated a traffic dataset, including 15 different vehicles to predict 
moving directions (Fig. 5a). Each sequence is composed of three 
224 × 224 frames and can be divided into five categories: up, down, 
right, left and axial (Methods). We compared ACCEL with individual 
EAC and OAC on the video judgement task, each connected with 
a single-layer, fully connected digital NN. ACCEL experimentally 
achieved a prediction accuracy of 92.6% at 5.0 fJ μm−2 per frame, 
1.8% and 11.6% higher than EAC and OAC, respectively (Fig. 5b). When 
reducing the light intensity for low-light conditions, we observed 
severe performance degradation in both EAC and OAC (Fig. 5c). By 
contrast, ACCEL experimentally maintained high accuracy, even 
better than a digital three-layer NN (Fig. 5c,d and Extended Data  
Fig. 5d).
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Fig. 4 | Experimental results of ACCEL for image classification.  
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the phase mask in OAC is 9.2 μm. b, Photograph of an etched eight-level phase 
mask with SiO2, serving as OAC. Scale bar, 500 μm. c, Experimental OAC output 
images obtained by a fixed SiO2 phase mask or a phase pattern generated by a 
phase-modulation SLM. Scale bar, 200 μm. d, Experimental classification 
accuracies of ACCEL with and without adaptive training on the MNIST, Fashion- 
MNIST and KMNIST datasets, compared with simulation accuracies. To match 
the parameters in experiments, we set the pixel size of the phase mask in  
OAC as 9.2 μm and the diffraction distance as 150 mm in the simulation. Simu., 
simulation; Exp., experiment. e, Confusion matrixes of ACCEL with single-layer 
small-scale digital NN (16 × 10 neurons) tested on the MNIST, Fashion-MNIST 
and KMNIST datasets. ACCEL and digital NN are connected through a 10-bit 

ADC and rectified linear unit nonlinearity is used between EAC and the digital 
NN. f, Experimental classification results of ACCEL with single-layer OAC  
and two-layer OAC on 3-class ImageNet classification, compared with digital 
fully connected and convolutional (LeNet-5) NNs (Supplementary Table 1).  
g,h, Experimental OAC weights (phase map) and EAC weights for the 
classification of Fashion-MNIST. Scale bar, 300 μm. i,j, Experimental example 
results for the Fashion-MNIST dataset with high-power light (5 fJ μm−2 per frame) 
(i) and low-power light (0.14 fJ μm−2 per frame) ( j), including the direct output 
of the photodiode array with and without OAC and the output after both OAC 
and EAC. Scale bar, 300 μm. k, Experimental classification accuracies of ACCEL, 
OAC-only and EAC-only under different low-light conditions on the MNIST, 
Fashion-MNIST and KMNIST datasets. a.u., arbitrary unit; Max., maximum; 
Min., minimum; Int., intensity; Simu., simulation; Exp., experiment.
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Computing speed and efficiency
As shown in Fig. 6a, the complete processing time of ACCEL for 
each frame is composed of three parts: (1) reset time tr, used to 
pre-charge computing lines with a uniform voltage and avoid 
residual effects of previous pulses; (2) response time tp, including 

complete propagation time for both OAC and EAC from analog light 
signals to analog electronic outputs; and (3) accumulating time 
ta, for the output signal to accumulate voltages distinct enough 
above the systemic noise threshold. The SRAM latency ts for 
weight update in EAC for each pulse is completed within the reset 
time (Fig. 6a, orange line) and, therefore, does not contribute to 
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accuracies of ACCEL connected with single-layer digital NN, EAC connected 
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with the incident light condition of 5 fJ μm−2 per frame (Supplementary Table 1). 
We use the sign function between EAC and OAC and the digital NN as the 
nonlinear activation. The pixel size of the phase mask in OAC is 9.2 μm, and the 
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Fig. 6 | Experimental measurements of the processing time and energy 
consumption of ACCEL. a, Illustration of the voltage output of ACCEL 
(purple), SRAM (orange) and control signals (green) during the complete 
processing time of one frame. An example of 3-class classification is 
demonstrated. b, Experimentally measured average reset time of about 
12.5 ns (n = 20,000). To avoid the influence of the buffer that disturbs the 
waveform, we measured the 32 times of reset time of about 398.8 ns. The 
steady-state voltage in the figure was about 0.86 V, which was the output 
voltage of the buffer when the input was 1.8 V (steady-state voltage of the 
computing line during reset operation). c, Measured average response time  
of 7.8 ns and average accumulating time of 9.2 ns when the incident light was 
80 μW (n = 20,000). For better visualization, we added a 0.86 V offset in the 
voltage of ACCEL output. The position of the vertical green dashed line marks 

the start of the response time, when the control signal reaches half VDD. The 
position of the vertical orange dashed line marks the end of the response time 
when the output voltage starts to drop. The vertical blue dashed line marks  
the end of the accumulating time when the drop of output signal has enough 
contrast to be distinguished. The accumulating time varies with the incident 
light power. d,e, Experimentally measured curves of classification accuracies 
on 3-class ImageNet versus measured systemic computing latency (d) and 
energy consumption (e) of one frame for comparisons among ACCEL, digital 
fully connected (FC) NN and convolutional NN (LeNet) with different layer 
numbers or batch sizes implemented on NVIDIA A100. FC, fully connected. 
Detailed network structures are listed in Supplementary Tables 1, 6 and 7.  
a.u., arbitrary unit.
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complete processing time experimentally (Extended Data Fig. 7 and  
Supplementary Note 6).

We established two experiments to measure the reset time, response 
time and accumulating time separately (Methods and Supplemen-
tary Notes 7 and 8). As the reset time is an intermediate process, the 
direct measurement may be distorted because of the limited output 
bandwidth in the chip. We specifically extended tr by 32 times and 
measured the upper limit of 32tr in the chip (Methods and Extended 
Data Fig. 8), which is about 398.8 ns (Fig. 6b). Therefore, the experi-
mental upper limit of reset time tr is 12.5 ns, which agrees well with the 
post-simulation results with Cadence (Extended Data Fig. 8d and Sup-
plementary Note 7). Because the noise variance of the output in EAC is 
6.43 μV according to the chip characteristic (Supplementary Note 8), 
we set the threshold of voltage drop as 65 μV in ACCEL. The measured 
average response time is 7.8 ns and the average accumulating time is 
9.2 ns when the incident light is 80 μW (Fig. 6c). The accumulating time 
decreases with the increase of exposure intensity as measured in Sup-
plementary Table 3, leading to the maximum of 2.1 ns for the incident 
light of 350 μW. We here used a clock frequency of 500 MHz (2 ns as a 
single clock period in ACCEL). When the incident light is 0.14 fJ μm−2 
per frame (3.5 mW), we used 12 clock periods for one pulse, allowing 
adequate time for correct operation. Therefore, the experimental 
processing time of ACCEL for one pulse is 24 ns, and the complete 
processing time of ACCEL including three pulses for 3-class classi-
fications is about 72 ns. Our fabricated ACCEL for 3-class ImageNet 
classification contains two 400 × 400 SiO2 OAC layers and a 1,024 × 3 
EAC layer, leading to a minimum number of operations per frame 
as 3.28 × 108 (Supplementary Note 9). Consequently, the measured 
computing speeds of ACCEL at the system level for 3-class ImageNet 
is about 4.55 × 103 TOPS (Supplementary Note 9 and Supplementary  
Table 4).

The measured average systemic energy consumption of ACCEL for 
3-class ImageNet classification is 4.4 nJ, composed of energy consump-
tion from the laser, SRAM, control unit and EAC computing (Methods). 
Hence the experimental systemic energy efficiency of ACCEL for 3-class 
ImageNet is 7.48 × 104 TOPS W−1 (74.8 peta-OPS W−1). Detailed calcula-
tions are listed in Supplementary Notes 4 and 9 and Supplementary 
Tables 4 and 5.

For practical applications, task performances also vary with dif-
ferent network structures, such as fully connected, convolutional or 
diffractive networks. Therefore, we proposed a new metric, termed 
as LeNet-equivalent operation number, to evaluate the effective 
operation number of ACCEL for fair comparisons with digital NNs. 
The LeNet-equivalent operation number equals the operation num-
ber of LeNet to reach the same accuracy as ACCEL on a complicated 
task before performance saturation, based on the fact that more 
operation numbers increase task performances for a specific net-
work structure. When achieving 82.0% on 3-class ImageNet classifi-
cation, the LeNet-equivalent operation number of ACCEL is 2.17 × 107 
(Extended Data Fig. 9). Therefore, the experimental systemic LeNet- 
equivalent computing speed and energy efficiency of ACCEL are 
301.39 TOPS and 4.95 × 103 TOPS W−1, respectively, remaining much 
higher than state-of-the-art digital and photonic devices (Extended  
Data Table 1).

Finally, we provided a direct validation by measuring end-to-end 
latency and energy consumption of ACCEL and different kinds of digi-
tal NNs implemented on state-of-the-art GPU for the same task (Sup-
plementary Tables 6 and 7). When processing images in serial with 
the same test accuracy, ACCEL experimentally achieved a computing 
latency of 72 ns per frame and energy consumption of 4.38 nJ per frame, 
much smaller than NVIDIA A100 whose latency and energy consump-
tion are about 0.26 ms per frame and 18.5 mJ per frame, respectively 
(Fig. 6d,e). Regardless of either way to calculate the operation num-
ber, all-analog ACCEL experimentally reduces the systemic latency 
and energy consumption by orders of magnitude compared to digital 

NNs on state-of-the-art GPU (NVIDIA A100) when achieving the same 
accuracy in practical applications.

Discussion
Scalability of ACCEL
The performance of ACCEL can be further improved if we add more 
layers to OAC45 or re-design EAC for parallel outputs with more sensi-
tive photodiode arrays. Increasing bits stored in SRAM can extend 
the maximum number of classification categories of ACCEL. In the 
aspect of manufacturing costs, we now only used standard 180-nm 
complementary metal-oxide-semiconductor (CMOS) technology for 
EAC and low-cost SiO2-etched panels for OAC, whereas state-of-the-art 
GPUs and tensor processing units require much more advanced CMOS 
processes. Advanced CMOS technology can be used in ACCEL to mas-
sively reduce the power consumption of the control unit operating at 
a higher clock frequency.

Moreover, more complicated network structures in OAC and EAC can 
also be implemented in an all-analog way for more challenging tasks, 
as verified by our previous works46,47. Neural networks with a larger 
size can be implemented in the EAC part for complicated nonlinear 
processes. With the low-power consumption and low latency in opto-
electronic conversion, several ACCELs can be cascaded in the future to 
implement a large-scale DNN by using the whole ACCEL as an encoder 
with a very small size of output nodes, and a digital micro-mirror 
device and light source to convert these nodes again from electronic 
signals to optical signals6. The EAC reconfigurability and the proposed 
adaptive training allow cascaded ACCEL to eliminate severe error  
accumulations.

Optical computing has native advantages in vision tasks as the pas-
sive light from the environment carries the information itself. How-
ever, existing ONNs usually require coherent light sources and are hard 
to apply in passive detection, which notably reduces the computing 
speed during light–light conversion. With strong noise robustness in 
low-light conditions, ACCEL can be directly used in processing incoher-
ent or partially coherent light fields as long as we reduce the aperture 
of the detection imaging system to enhance the spatial coherence. 
For verification, we conducted an experiment on video judgement by 
illuminating the object with the flashlight on a cell phone (Extended 
Data Fig. 4g,h and Supplementary Video 1). High-speed recognition was 
obtained with an experimental classification accuracy of 85% over 100 
testing samples, indicating the capability of ACCEL to compute with 
incoherent light directly. This capability can not only further reduce the 
power consumption but also improve the processing speed in practical 
applications without requirement of extra sensors and light sources 
to capture and reproduce the scene.

By combining the advantages of both photonic and electronic com-
puting, ACCEL achieves a systemic computing speed of 4.55 × 103 TOPS 
and an energy efficiency of 7.48 × 104 TOPS W−1 experimentally, 
orders of magnitude higher than state-of-the-art methods, and 
maintains competitive accuracy in diverse intelligent vision tasks, 
compared with digital NNs in electronic processors. Besides serving 
as a general smooth interface from analog optical signals to digi-
tal signals, ACCEL also opens up a new horizon for broad practical 
applications of optoelectronic analog computing such as wearable 
devices, robotics, autonomous driving, industrial inspections and  
medical diagnosis.
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Methods

Experimental set-up and materials
Sketches and experimental set-ups of ACCEL both with SLM and 
fixed SiO2 as single-layer OAC are shown in Extended Data Fig. 4. The 
diffractive distances of the SLM and the SiO2 mask for single-layer 
OAC are both set as 150 mm. The diffractive distances of ACCEL with 
two-layer OAC are set as 140 mm between the layers of OAC and 145 mm 
between the OAC and EAC. For coherent-light experiments, we used a 
single-mode 532-nm laser (Changchun New Industries Optoelectron-
ics Tech, MGL-III-532-200mW). The laser is first collimated with the 
beam expander and illuminates the amplitude-modulation-only SLM  
(HOLOEYE Photonics, HES6001), which is used to input images and 
videos with linear polarizers and a polarized beam splitter. The testing 
data is the first 1,000 images from the original testing dataset without 
selection in MNIST, Fashion-MNIST and KMNIST classification experi-
ments and first 500 sequences from the original testing dataset without 
selection in time-lapse experiments. For the partial-coherent-light 
experiment, we used a flashlight on a cell phone as the light source and 
a 4f relay system as the imaging system to relay the light field to ACCEL.

We used phase-modulation-only SLM (Meadowlark Optics, P1920-
400-800-PCIE) or SiO2 plates as OAC in ACCEL. By overlay photolithog-
raphy, the depth level of the SiO2 phase mask is 3 bits with a maximum 
etch depth of 1,050 nm and minimum line width of 9.2 μm. The thickness 
of the plate is 0.6 mm and the material is jgs1. The analog electronic chip 
for EAC is fabricated with the 180-nm standard CMOS process of the 
Semiconductor Manufacturing International Corporation. The supply 
voltage is 1.0 V for the on-chip controller but 1.8 V for other modules 
of EAC. The chip area is about 2.288 mm × 2.045 mm. The photodiode 
array has a resolution of 32 × 32 with a pixel size of 35 μm × 35 μm and 
a fill factor of 9.14%.

Weight storage in EAC
As shown in Fig. 2h, an SRAM macro is used in each pixel to store binary 
weights, which controls the switches S2 and S3 to connect the photo-
diode to computing line V+ or V−. The SRAM macro is composed of 16 
SRAM units, so that computation of binary fully connected networks 
supports up to 16 output nodes (Extended Data Fig. 1a). Multiple out-
puts of the binary fully connected network are calculated serially along 
time (Fig. 1b). To compute the value of a new output, the correspond-
ing weight in the SRAM macro is first read out to control the switches 
S2 and S3, and the photocurrent accumulation process sequentially 
begins. The standard eight-transistor SRAM structure, which adopts 
a separate write-word-line and a separate read-word-line for the write 
operation and read operation, is used for SRAM circuit implementation 
(Extended Data Fig. 1b).

Operation pipeline of EAC
Before the calculation by each pulse, switch S1 in each pixel (Fig. 2h) is 
first turned on to reset the voltage of the computing lines V+ and V− to 
the same supply voltage VDD, to avoid the residual effect of previous 
pulses. During this reset time, the SRAM macro updates the switch to 
connect either S2 or S3 based on the weight wij for the jth output pulse. 
The weights wij for each output node are then sequentially read out 
from the SRAM macro during each pulse to control the switches S2 
and S3, leading to Noutput output pulses of the fully connected neural 
network implemented sequentially in the temporal domain. Finally, a 
comparator is used to find the maximum output voltage, which cor-
responds to the classification result in the all-analog mode. The timing 
diagram of each signal in EAC during calculation is shown in Extended  
Data Fig. 1c.

Training of ACCEL
For the training of ACCEL, we model the complete analog physical 
process in both OAC and EAC jointly with Tensorflow, including the 

modulation and light diffraction in OAC, the nonlinearity using photo-
electronic conversion and the equivalent matrix multiplication in EAC. 
We implemented end-to-end fusion training by stochastic gradient 
descent and back propagation with the loss function as: l = C(S(Vo), G), 
where C(x) is the function of cross entropy; S(x) is the function of soft-
max; G is the vector of correct labels and Vo is the output results—that 
is, analog output voltages of ACCEL. After training, we obtained both 
the phase masks in OAC and the weights wij in EAC.

Modelling of low-light conditions
In addition to the intrinsic shot noise of the light modelled with a 
Poisson distribution, noises such as the thermal noises in EAC and 
the readout noises after EAC become relatively dominating when the 
input light intensity reduces either by reducing the input laser power 
or reducing the exposure time. For simplification, we modelled the 
comprehensive influences of the two kinds of noises as two random 
Gaussian variations on OAC and EAC outputs, respectively. The mean 
values of the Gaussian distributions were set as zero and the variances 
were set as constants. We multiply the normalized OAC output with a 
coefficient corresponding to the change in the light intensity. The vari-
ance of the OAC output noise σOAC was calibrated with the mean SNR 
of experimental OAC outputs. The variance of the EAC output noise 
σEAC was computed with the mean SNR of experimental EAC outputs. 
The numerical simulations accord well with the experimental results 
(Figs. 3e and  4k).

Measurement of the reset time
Each pixel unit contains a local reset switch controlled by the RST signal 
to connect the photodiode to the power supply VDD (Extended Data 
Fig. 8a). When the reset switch is turned on to enable the reset opera-
tion for the computing line, the photodiodes are charged to supply 
voltage VDD with the local charging paths in each pixel. The charging 
speed is determined by the RC time constant τ = RS0CPD, where CPD is 
the capacitance of the photodiode and RS0 is the on-resistance of the 
reset switch (Extended Data Fig. 8b). The transient function of the volt-
age of the photodiode with time can be formulized with the standard 
RC charging function as VPD(t) = VDD – (VDD – V0)e−t/τ, where V0 is the 
initial voltage of the photodiode. Theoretically, VPD approaches the 
stable-state-voltage VDD as time t approaches infinite. Here, we consider 
VPD reaching the stable state when the increase of VPD from V0 is larger 
than 99% of VDD – V0, and thus the reset time is derived as tr = 4.6τ, which 
is about 12 ns according to the post-simulation result (Extended Data 
Fig. 8d). The voltage of the computing line is read out with an on-chip 
buffer to the chip I/O pin and recorded by an oscilloscope. However, 
because of the limited bandwidth of the on-chip buffer, the output 
signal may be distorted when the computing line is charged at a high 
speed, affecting the precision of the measured reset time. To meas-
ure the reset time more precisely, we used peripheral charging paths 
instead of the in-pixel local charging paths for the reset operation.  
The 1,024 photodiodes in the pixel array were all connected to the 
computing line V+, and V+ was connected to the power supply VDD 
with 32 peripheral switches (Extended Data Fig. 8a,c). Thus, the RC 
time constant of the peripheral charging path becomes τ′ = (RS0/32) ×  
(1,024 × CPD) = 32τ, resulting in the reset time of about 32 times 12 ns. 
The experimentally measured reset time with peripheral charging 
paths is presented in Fig. 6b. The horizontal dashed lines are the aver-
age values of the steady-state voltage. The vertical dashed lines are 
the intersection points of the signal with the steady-state voltages 
(horizontal lines). Furthermore, if we consider the charging resist-
ance introduced by RS1, the reset time with peripheral charging paths 
is larger than 32 times that with local charging paths. Therefore, the 
time of dividing the measured 398.8 ns in Fig. 6b by 32—that is, 12.5 ns 
is the upper limit of the experimental reset time, according well with 
the post-simulation results with Cadence (Extended Data Fig. 8 and  
Supplementary Note 7).



Measurement of systemic computing speed
We implemented experiments to measure the three parts of the com-
plete processing time of ACCEL (Fig. 6b,c). As mentioned before, the 
experimentally measured upper limit of the single-pulse reset time tr is 
12.5 ns. The measurements of the remaining response time and accumu-
lating time are displayed in Fig. 6c. The beginning of the response time 
is the time when the control signal (green line) reaches half VDD (0.9 V 
here), indicating the state of the reset switch in each pixel beginning 
to flip. The end of the response time is the time when the signal starts 
to drop, which is also the beginning of the accumulating time (orange 
line). The end of the accumulating time is the time when the output volt-
age drops to a certain level with enough SNR to distinguish (blue line). 
Because the noise variance of the output in our EAC is about 6.43 μV 
according to the characteristic of the chip (Supplementary Note 8), we 
set the threshold of voltage drop as 65 μV (more than 20 dB) in ACCEL. 
Input light with higher power will increase the descent rate of the output 
voltage, leading to further reduction of the accumulating time at the 
cost of larger power consumption, whereas the response time is rather 
similar under different light powers. The experimentally measured 
response time is about 7.8 ns, and the measured accumulating time is 
9.2 ns when the incident light is 80 μW. Therefore, the response time 
and accumulating time are together 17.0 ns for an incident light of 
80 μW. Moreover, we experimentally measured the accumulating time 
for the output voltage to reach 20 dB under different light powers in 
Supplementary Table 3. When the incident light is above 350 μW, the 
accumulating time is within 2.1 ns according to measurement.

The switch between reset and response requires the control signal 
from the control unit. A high-frequency clock precisely matching the 
processing time can increase the processing speed at the cost of high 
power consumption. Although the power of the control units increases 
along with the clock frequency, it also results in higher computing 
speed. We here used a clock frequency of 500 MHz with 2 ns for a  
single clock period in ACCEL. When the incident light equals or is above 
0.14 fJ μm−2 per frame (3.5 mW), we used 12 clock periods for the reset, 
response and accumulating time, allowing adequate time for correct 
operation in each procedure. Therefore, the experimental complete 
processing time of ACCEL for one pulse is about 24 ns. Because the 
number of pulses for one frame in ACCEL depends on the number of 
classification classes, the complete processing time of ACCEL, includ-
ing three pulses for 3-class classifications and 10 pulses for 10-class 
classifications, is about 72 ns and 240 ns, respectively. Our fabricated 
ACCEL for 3-class ImageNet classification contains two 400 × 400 SiO2 
OAC layers and a 1,024 × 3 EAC layer. Our fabricated ACCEL for 10-class 
MNIST classification contains a 264 × 264 OAC layer and a 1,024 × 10 EAC 
layer. Therefore, they have a minimum number of operations per frame 
as 3.28 × 108 and 1.43 × 108 for 3-class ImageNet and 10-class MNIST  
classification, respectively (detailed calculations in Supplementary 
Note 9 and Supplementary Table 4). As a result, the experimental 
computing speeds of ACCEL at the system level for 3-class ImageNet 
and 10-class MNIST classifications are about 4.55 × 103 TOPS and 
5.95 × 102 TOPS, respectively.

Measurement of systemic energy efficiency
Because OAC implemented with fixed SiO2 phase masks is passive, the 
energy consumption only contains the incident light energy and all the 
energy for the electronic devices in ACCEL, including the energy for 
pre-charging and computing with photocurrents in EAC, the energy 
used to store, read and switch weights in SRAM and the energy of the 
control unit to switch ACCEL between pre-charging and computing.

For the 10-class MNIST classification under the incident light energy 
of 0.14 fJ μm−2 per frame, the measured energy of light (laser energy 
instead of the energy arriving at ACCEL) is about 11.8 nJ for the pro-
cessing duration. The energy consumption of SRAM and the control 
unit for one frame are experimentally measured as 1.2 nJ and 2.0 nJ, 

respectively. The energy consumption of EAC computing is about 
38.5 pJ. Therefore, the systemic energy consumption of the ACCEL 
at 0.14 fJ μm−2 per frame for 10-class MNIST classification is 15.0 nJ. 
For 3-class ImageNet classification when achieving the classification 
accuracy of 82.0% experimentally, the measured energy consump-
tion of laser, SRAM, control unit and EAC computing for one frame are 
about 3.4 nJ, 0.4 nJ, 0.6 nJ and 11.6 pJ, respectively. The systemic energy 
consumption of ACCEL for 3-class ImageNet classification is 4.4 nJ. We 
also listed these detailed numbers and calculations in Supplementary 
Note 9 and Supplementary Table 4.

As a result, the experimental systemic energy efficiency of ACCEL 
for 10-class MNIST and 3-class ImageNet are 9.49 × 103 TOPS W−1 and 
7.48 × 104 TOPS W−1 (74.8 peta-OPS W−1), respectively. Similarly, the sys-
temic energy efficiency of ACCEL connected with a small-scale digital 
layer for 10-class MNIST and time-lapse tasks are 5.88 × 103 TOPS W−1 
and 4.22 × 103 TOPS W−1, respectively (detailed calculations are listed 
in Supplementary Notes 4 and 9 and Supplementary Tables 4 and 5).

End-to-end comparison between ACCEL and state-of-the-art 
GPU
We provided a direct validation by measuring end-to-end latency 
and energy consumption of ACCEL and different kinds of digital NNs 
implemented on state-of-the-art GPU when experimentally achiev-
ing the same accuracy on the same task. Because MNIST is a relatively 
simple vision task, leading to saturation of the classification accu-
racy (Extended Data Fig. 9a and Supplementary Table 6), we used a 
more complicated vision task for testing (3-class ImageNet classifica-
tion), which has a higher resolution (256 × 256 pixels here) and much 
more details than MNIST (Extended Data Fig. 9b and Supplementary 
Table 7). For state-of-the-art GPU, we used NVIDIA A100, whose claimed  
computing speed reaches 156 TFLOPS for float32 (ref. 33). ACCEL with 
two-layer OAC (400 × 400 neurons in each OAC layer) and one-layer 
EAC (1,024 × 3 neurons) experimentally achieved a testing accuracy of 
82.0% (horizontal dashed line in Fig. 6d,e). Because OAC computes in 
a passive way, ACCEL with two-layer OAC improves the accuracy over 
ACCEL with one-layer OAC at almost no increase in latency and energy 
consumption (Fig. 6d,e, purple dots). However, in a real-time vision 
task such as automatic driving on the road, we cannot capture multiple 
sequential images in advance for a GPU to make full use of its computing 
speed by processing multiple streams simultaneously48 (examples as 
dashed lines in Fig. 6d,e). To process sequential images in serial at the 
same accuracy, ACCEL experimentally achieved a computing latency 
of 72 ns per frame and an energy consumption of 4.38 nJ per frame, 
whereas NVIDIA A100 achieved a latency of 0.26 ms per frame and an 
energy consumption of 18.5 mJ per frame (Fig. 6d,e).

Benchmarking against digital NNs
Detailed structures of digital NNs used to compare with ACCEL are all 
listed in Supplementary Table 1.

Dataset availability for video judgement in traffic scenes
The full version of our video dataset with five categories for moving- 
direction prediction in traffic scenes can be accessed at GitHub (https://
github.com/ytchen17/ACCEL/tree/v1.0.1/video%20judgment%20
dataset). It is composed of 10,000 different sequences with 8,000 for 
training and 2,000 for testing. The types, initial positions, moving 
speeds and sizes of the vehicles are all set randomly in the dataset for 
generalization.

Data availability
The data supporting the findings of this study are available in the main 
text, Extended Data, Supplementary Information, source data and 
Zenodo (https://doi.org/10.5281/zenodo.8174034). Source data are 
provided with this paper.
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Code availability
The algorithms and codes supporting the findings of this study are 
available in the main text, Extended Data and GitHub (https://github.
com/ytchen17/ACCEL).
 
48. NVIDIA Corporation. NVIDIA Data Center Deep Learning Product Performance. nVIDIA. 
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44th Annual International Symposium on Computer Architecture (ISCA), 1–12 (ACM, 2017).
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Extended Data Fig. 1 | Implementation and timing diagrams of EAC circuit. 
a,b, Implementation of the SRAM macro in each pixel. The SRAM unit circuit is 
implemented with the standard 8-transistor structure. RWL, read word-line; 
WWL, write word-line; RBL, read bit-line; RCL, read-column; PRCH, pre-charge. 
c, Timing diagram of the signals in the EAC chip during computation, which 
consists of four operations: SRAM reset, SRAM readout, computing line reset 
and photocurrent computation. Signal DOUT,i is the internal pre-charging node 
in the SRAM macro in ith pixel unit (1 ≤ i ≤ 1024). Signal Qi is the output of SRAM 
macro in ith pixel unit, determined by the stored weight wij, where 1 ≤ j ≤ Noutput 
labels the jth output node. The SRAM operation and reset operation of computing 
line can be conducted simultaneously. d, Timing diagram of the capacitance 

compensation process. The compensation process is performed by a binary 
search strategy in multiple steps to tune the load capacitance C+/C− of the 
computing line V+/V− to the same value. The presented 6-bit binary codes 
stored in the P-CCM/N-CCM registers indicate the number of the compensation 
photodiodes (PDC) in the P-CCM/N-CCM connected to the computing line. The 
variations of C+ and P-CCM/N-CCM registers illustrated in this figure correspond 
to the case where the number of positive/negative weights are 490/534. e, The 
circuit structure of the comparator. The comparator utilizes back-to-back 
inverters that form a latch for comparing and switches for timing controlling.  
f, Timing diagram of the comparator. The operation of the comparator includes 
three phases: reset (RESET), sample (SMP) and compare (CMP_EN).
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Extended Data Fig. 2 | Measured nonlinearity in ACCEL and experimental 
results of ACCEL with SLM-based OAC and SiO2-based OAC. a,b, Experimentally 
measured nonlinear response of the photodiode (PD) in ACCEL versus different 
amplitudes of the electronic field for incoherent white light (a) and 532-nm 
coherent light (b). The area of the photosensitive surface A = 1.25 mm2; the 
speed of light c = 3.0 × 108 m/s; the dielectric constant ϵ = 8.9 × 10−12 F/m; 

elementary charge e = 1.602 × 10−19 C; Planck constant h = 6.626 × 10−34 J ∙ s. 
c,d, Experimental classification accuracy of ACCEL with SLM-based OAC and 
SiO2-mask-based OAC under different exposure powers on the MNIST dataset 
(c) and the Fashion-MNIST dataset (d). The results are tested over the first 
1,000 images in the testing dataset without selection. The pixel size of OAC is 
9.2 μm and the diffraction distance is 150 mm here.



Extended Data Fig. 3 | Evaluation of the robustness of adaptive training 
obtained by numerical simulations. a, The testing accuracy of ACCEL under 
the condition of fabrication errors in the OAC phase mask with adaptive training 
of different scales of training datasets. The phase pattern in OAC is disturbed 
by Gaussian noises with a mean value of zero and standard deviation of 0.26π  
to simulate the fabrication error. b, The testing accuracy of ACCEL under the 
condition of lateral misalignment between OAC and EAC with adaptive training 
of different scales of training datasets. The OAC and EAC are misaligned by 
shifting one column horizontally. c, The testing accuracy of ACCEL under the 

condition of rotation misalignment between OAC and EAC with adaptive 
training of different scales of training datasets. The OAC and EAC are misaligned 
by rotating clockwise by 5 degrees around the centre. All these results are tested 
on MNIST dataset. The scales of training dataset are 100, 500, 1,000, 1,500, 
2,000, 4,000, 7,000, 10,000, 20,000, 40,000 and 60,000 images. To match 
the parameters in experiments, we set the pixel size of the phase mask in OAC as 
9.2 μm and the diffraction distance as 150 mm here, and the neuron number in 
OAC is 264 × 264.
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Extended Data Fig. 4 | Experimental set-ups for testing ACCEL. a–c, Schematic 
of the experimental set-up for testing ACCEL with coherent light, using a fixed 
SiO2 phase mask as the single-layer OAC (a), SLM as the single-layer OAC (b), and 
two fixed SiO2 phase masks as the two-layer OAC (c). d–f, Photograph of the 
corresponding experimental set-up for testing ACCEL with coherent light, 
using a fixed SiO2 phase mask as the single-layer OAC (d), SLM as the single-layer 

OAC (e), and two fixed SiO2 phase masks as the two-layer OAC (f). g, Schematic 
of the experimental set-up for ACCEL computing with incoherent light.  
h, Photograph of the experimental system with incoherent light. The size of 
training and testing datasets are 400 and 100 sequences, respectively.  
Each sequence includes three frames. PF, linear polarizer; SLM, spatial light 
modulator; BS, beam splitter; PBS, polarization beam splitter.



Extended Data Fig. 5 | Numerical evaluation of ACCEL with different pixel 
sizes, diffractive distances in OAC, and various exposure power. a,b, Testing 
accuracies of ACCEL with different pixel sizes and diffractive distances on the 
MNIST dataset. Scale bar, 200 μm. The neuron number of OAC for the pixel 
sizes of 3 μm, 6 μm, 9.2 μm, and 12 μm are 500 × 500, 250 × 250, 164 × 164, and 
126 × 126, respectively. c,d, The testing accuracy of ACCEL and digital NN under 

different exposure powers on MNIST and time-lapse tasks. ACCEL and digital 
NNs are trained under the exposure power of 3.38 fJ per μm2 per frame in (c) and 
1.17 fJ per μm2 per frame in (d) (detailed network structures in Supplementary 
Table 1). We set the pixel size of OAC as 3 μm and the diffraction distance as 
3 mm here.
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Extended Data Fig. 6 | Experimental evaluation of the reconfigurability  
of all-analog ACCEL. a, OAC weights trained for the MNIST dataset. Scale bar, 
300 μm. b, Experimental classification accuracies of ACCEL with the OAC  
mask trained for MNIST on the tasks of Fashion-MNIST and KMNIST. Fully 
reconfigured ACCEL trained for specific datasets are shown for comparisons. 
c–e, Reconfigured EAC weights for different datasets. f, The OAC weights 

jointly trained for MNIST, Fashion-MNIST and KMNIST datasets. Scale bar,  
300 μm. g, Experimental classification accuracies of ACCEL with the jointly 
trained OAC mask on the tasks of MNIST, Fashion-MNIST and KMNIST. Fully 
reconfigured ACCEL trained for specific datasets are shown for comparisons. 
h–j, Reconfigured EAC weights for different datasets. The pixel size in OAC 
here is 9.2 μm.



Extended Data Fig. 7 | Experimentally measured latency for weight switching 
by SRAM in ACCEL. a–d, Experimentally measured time of weight switching of 
SRAM in all four situations: from 1 to 1 (a), from −1 to 1 (b), from 1 to −1 (c) and 

from −1 to −1 (d). e–h, Calculated time of weight switching by SRAM with 
parameters from the foundry with post-simulation in all four situations:  
from 1 to 1 (e), from −1 to 1 (f), from 1 to −1 (g) and from −1 to −1 (h).
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Extended Data Fig. 8 | Measurement of reset time, response time and 
accumulating time of ACCEL and circuit modelling of reset operation. 
 a, Configurations of reset operation with the voltage-readout signal chains for 
computing lines. The voltages of computing lines are read out with an on-chip 
buffer for observations. The signal generator provides the control signal, 
which enables the reset operation when the voltage of control signal is low 

(ground voltage), and enables the computing process when the voltage of 
control signal is high (supply voltage). b, Circuit modelling of the pre-charging 
process of the computing line with local charging paths. c, Circuit modelling of 
the pre-charging process of the computing line with peripheral charging paths. 
d, Post-simulated timing diagram of the reset operation of computing line with 
local pre-charging paths.



Extended Data Fig. 9 | Comparisons of the testing accuracies among ACCEL 
and digital electronic neural networks with different operation numbers 
over MNIST and 3-class ImageNet classification, obtained by numerical 
simulations. a, 10-class classification accuracies on MNIST of ACCEL, digital 
electronic fully-connected NN and convolutional NN (LeNet) with different 
layer numbers (corresponding to different operation numbers) obtained by 

numerical simulation. b, 3-class classification accuracies on ImageNet of 
ACCEL, digital electronic fully-connected NN and convolutional NN (LeNet) 
with different layer numbers (corresponding to different operation numbers) 
obtained by numerical simulation. Detailed structures of the digital NNs are 
listed in Supplementary Tables 6, 7.
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Extended Data Table 1 | Main experimental performance of ACCEL compared with state-of-the-art electronic and photonic 
devices

We use the energy efficiency, computing speed, and processing latency at the system level here for comparisons49,50. DMD, digital micro-mirror device; SLM, spatial light modulator; sCMOS,  
scientific complementary metal oxide semiconductor; MZM, Mach-Zehnder modulator; SMF, single-mode fibre; PD, photodetector; PCM, phase-change materials; PIN, P-doped-intrinsic- 
N-doped; CMOS, complementary metal oxide semiconductor. For the performance of GPU, we listed both the claimed computing speed and efficiency from the official website (parallel stream 
for processing multiple input images simultaneously) and our experimentally measured results on the same task as ACCEL (single stream for single input image in real-time processing) for fair 
comparisons.
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